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’ Abstract
;:
L
. The overflow stream from an M/PH/1 queue of finite capacity is used

as the input to an unbounded queue with one or more exponential servers.
It is shown that the combined system, consisting of the two queues, may be

studied as a highly structured Markov process. In the stable case, this |

& Markov process has a matrix-geometric invariant vector. Particular

features of the infinitesimal generator of the process may be used to sim-

Q,' plify the numerical computation of various steady-state features of the o

model. Several variants and numerical examples are discussed.

i

Rey Words

Overflow in queues, matrix-geometric solution, phase type distributions, }

systems of queues, computational probability.

Accesaion For
2 NTIS GRAXI
R DDC TAB

3 Unannounced
Justification

By,
g;gggibutggg(
o fYailedi 2ty Codes

Availand/or i
Diat. special |

A




R Rt
PSS .

1. The Model

We study a service system with two units, each with a single server.
Unit 1 is of finite capacity K. Unit 2 has as its input the stream of
overflow customers from Unit 1, i.e. any customer who upon arrival to the
system finds K customers (waiting or in service) in Unit 1 proceeds for
service to Unit 2. The queue in Unit 2 is unbounded. Tractable variants
of this model, involving multi-server units with exponential servers, are
discussed in Sections 4 and 5.

The arrivals to the system are according to a Poisson process of rate A.
The successive service times in Unit 1 are independent and have a common

distribution of phase type [6,11], given by the irreducible representation

(B,S) of order m. Service times are assumed to be positive random varia-
bles, so that Bm+1 = (0. Customers, who upon arrival find K customers in
Unit 1, go to Unit 2. Service times in that unit are independent exponential
random variables with parameter u. The interarrival times and the successive
service times in both units form independent sequences of random variables.
For the present, we assume that there are no independent arrivals directly

to Unit 2.

This queueing system may be viewed as an M/M/1 queue in a Markovian
environment (8,9,11]. In order to see this, we first consider Unit 1 alone.
It may be studied as a continuous-parameter Markov chain on the state space
E = {oju{(1,3): 1 <4 <K, 1<]j<ml} The index 1 denotes the nuﬁber
of customers in Unit 1 and the index j gives the phase of the current ser-
vice. The state O corresponds to the case where Unit 1 is empty.

The infinitesimal generator Q of this Markov process is given by
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1Q=0, 1e~1.

3
§°  S-AL AL ;
S°B°  S-AI AL %
¢
1 Q= $°B°  S-AI AL , :
S°B°  S-AI  AI )
:
S°B° s :

where the matrix S°B° is defined by S°°B. _The states (1,j), 1 <1 <K,
1 <j<m are ordered in the lexicographic manner.

The process Q now clearly acts as an envirommental process, which
modulates the arrival rate to the second unit. Whenever the process Q
is in one of its states (K,j), 1 < j < m, there are arrivals to Unit 2
according to a Poisson process of rate A. At all other times the arrival
process to that unit is interrupted.

For future use, we note the following explicit formulas for the unique

stationary probability vector 7® of Q, which satisfies the equations

After partitioning into the form ["0’11’1'-2""’11(]’ the vector 1 is

given by

v=]l

K-1 -1
wo-E+g zc&+xg§H@§5% .

i
(2) L= 8C, for 1 <1< K-1,

=amy 8 i=sTh

*ﬂ




where

3) C = A(AI-AB°°=5)"L .

The matrix B°°® is defined by B°° = e - 8 .

Proof

The vector 7 1is the stationary probability vector for the (Km+l)-
state Markov process which describes the bounded M/PH/1 queue. The simple
proof of the lemma, which is given in [11], is repeated here for completeness.

The steady-state equations T Q = 0, may be written as

-Aﬂ'o"'l §°.09

1
- °°-
Amg B+ T (S-AI) + 7, S°B° =0,
(%) _ ono o )
A11_1+_1H(SAI)+11+1$B o, for 2 <1< k-1
AEK_I-G-_[KS-_O_.

Postmultiplying all equations in (4), but the first, by e, we obtain
Ar,e~m 18, for 1<4<K1, or equivalently A T, B -
T4l S°B°. Replacing the rightmost term in the equatioms for i =1, ...,

K-1 by A B°°, we obtain

L
A Ty B = 1, (AI-AB®°-S)

AT

= -ARBR°%- -
T Li(XIAB s) , for 2 <1 <K-1.

This readily leads to the formulas (2). The non-singularity of the matrix

C may easily be proved by contradiction.




The entire system may now be studied as a Markov process on the state

space E = {k >0} E with generator Q* given by

1’
Q=24 Al
ul Q=AA-ul Ad
ul QAA-ul AA
(5) Q* = uI Q-AA_uI e '

where A denotes a diagonal matrix of order Kmt+l, whose last m diagonal
elements are equal to one. All its other elements are zero. In Formula (5),
1 denotes an identity matrix of order Kmt+l .

The matrix Q* i1is a particular case of the generators, discussed in
[11). The following theorem is therefore immediate.
Theorem 1

The queueing system is stable if and only if
(6) Adg&<u -

The stationary probability vector x of Q*, partitioned into vectors

s k > 0, of dimension Kmtl, is given by
€))] x =1 (I-R) Rk, for k>0.
The matrix R is the minimal nonnegative solution to the equation

(8) i Rz + R (Q-AA-uI) + \A =0 ,

.and has spectral radius less than one.

s
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As was pointed out in (11], the fact that all but the last m rows
of A vanish implies that the same is true of the matrix R. Although the
matrix R 1is of order Kmtl, only its last m rows are positive. This

special structural property may be exploited to compute R efficiently.

2. Algorithmic Procedure

Taking the simplified structure of the matrices R and Q into ac-
count, we may rewrite Equation (8) as follows. We partition the last m
rows of R into [_150, Rl’ R2, ceey RK]’ where 50 is a columm vector of

dimension m and R,, 1 < i < K, are square matrices of order m. It then

1’
follows from (1) and (8) that

- °-
u ReR, (M) Ry +R;S° =0,
oRo o
© unlez1+xgog+nl [S-(A+u)I]+RZSB o,
- °°-
W RgR, + AR, _, + R, [S-O+u)I] + R, , S°B 0,
for 2 <1< K-1,

WRE AR+ R [S-Oo)I] + AT =0 .

Setting M = [(JH-u)I—S]-l, the equations (9) may be written in the

convenient form

Ry = )T (u RRGRSY)
Ry = w RRy + ORG#R,STIEI M,

- o,
(10) R, = [WRRHR, _IM+R_, SBN,

for 2 <1< K-1,

Rg = [u R.12(+ARK_1+AI] M.




It may be verified by an elementary induction argument that the Gauss~-

Seidel type iterates, defined for n > 0, by

Ro(a+l) = (o) ™h [w Ry (k) By () + R (@D)S°] ,
R, (1) = {u Re(n+l) R, (n) + [X Ry(n) + R, (a+1)$°] BIM,
R (otl) = [u Ry(n+l) Ry(n) + A R,_,(m)] M + Ri+1(n+1)§°'§ M,
for 2 <4< K-1,
Re(a+l) = [u Ra(@) + A R_ (@) +AIl M, |

with RK(O) = A M, Ri(O) =0, 1<4i<k-1, 3_0(0) =0 , converges increasingly
to the desired matrix R. This method of computation has clear advantages over
successive substitutions.

As was proved in [8], the matrix R satisfies the relation

X K
(11) uRe=y §0+jEle_e_-kg,

which provides a useful accuracy check on the computation of R. The matrix
j K is formed by the last m rows of R.

From Equation (7), by using the structure of R, we obtain

v

X, =7T-7_R
(12) ey
5‘-1&(1-&[()!{[( R, for k>1.

By virtue of (11), the marginal density of the queue length in Unit 2 is

given by

-1
Yo=l-Aw " me,

(13) -1 k-1
yk-)\u EK(I-RK)RK e, for k> 1.

B,
B
0L
&
Pl




It is of particular interest to study the conditional densities of the

queue length in Unit 2, given the number of customers present in Unit 1.
To this end, we partition the vector X as [xéo), (1) (K)],

Ek geees
(r)

the X 1 <r <K, are m-vectors. The conditional queue length density,

where

given that there are j customers in Unit 1 is then given by

(k) -1 ()
q = (m,.e) e, for 1 <3 <K,
(a0 j() S )l‘k ) |
k -1 _(0
B =T ’

for k>0 .
From the formulas (12), (13) and (14), expressions for the first and

second moments of the corresponding queue lengths may be routinely calculated.

3. The Waiting Time Distribution

We now consider the stationary distribution of the waiting time of an
arriving customer, under the first-come, first-served queue discipline. There
are two cases. Either the customer is admitted into Unit 1 and is served
immediately or he waits for a time not exceeding x units of time; or the
customer finds the first unit full and goes to the second unit. If it is
free, he is immediately taken into service. If not, he may have to wait
there for not more than x units of time. We denote the conditional waiting
time distributions, corresponding to these two alternatives by Wi(-) and
Wz(-) respectively.

Wl(x) may be viewed as the distribution of the time till absorption in

the Markov Process with infinitesimal generator

Al ki s s N e A




2 |o S°B° )
= on o
Q 3 0 S°B s
4 0 S°B°
* S 0
-1 | s°8° s

with the initial probability vector,
(15) = (1-7 e)-l (T, T, T ey T o)
4 =X = 0° —=1* =2> **"? X-17 °

In order to compute this distribution, we consider the system of dif-

ferential equations,

i = 3, (0 §°,
(16) yi(x) =y, (x) S+y,,()8%3, for 1 <1<K-2,
g 10 = ¥ 1) 8,
with initial conditions, given by (15) .
Clearly [xi(x)]j is the probability, that the customer is in the
state (4,j), 1 <j <m, of the Markov process Q1 at time x. From this
it follows that Wl(x) = yo(x), for x> 0.
The conditional distribution Wz(-) is obtained as follows. Since the
service time in Unit 2 is exponential with parameter yu, the Laplace-Stieltjes

transform w;(-) is given by,




[

10

TR -1 G ()t
Wy(s) = (me) rEO [E] x e

r
r
) e e

- (l'xs.)-l e (I-Rp)e + (EK_e_)-l W oI (I-Ry) Ry [sI-u(RK-I)]-l e.

a7 - o™t

Upon inversion, we obtain
18 W =1 - (re) "l 1 R explux(Re-Dle , for x>0 .

To compute Wz(-), it suffices to solve the system of differential

equations
¥'(x) = u v(x) (RK-I) s

-1
with initial condi-.tions v(0) = (ze8) "7 Ry , and to form W, (x) =
l-v(x)e, for x>0.

Finally, the unconditional waiting time distribution is obtained as,

W(x) = (l-HKg_) Wx) + 1, eW,(x), for x>0 .

Tz
The mean waiting time of an arriving customer is computed by comsidering
the two units separately. The Laplace-Stieltjes transform of Wl(x) is

given by,

K-1
+ I m [(s1-5)"! 5°B°1% &

*
Wl (s) = 7
r=1

0

K-1
-1 -1
=7x.+ I m_ (sI-8) §°fr (s) »
0 r=1

where f(s) = 8 (s1-8) " 8°. The mean of W (+) 1is hence given by ,

K-1
52 (r-1) e,

K-1 1

' -
-WFP(0) = L 7 S e+ u,
1 =1 T lr
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where ul' is the mean service time in Unit 1. Similarly, upon differentiating

W;(S) we get
- W;'(O) -yt [(z_kg_)'l T (I-Rk)-l_g-l] .
The mean waiting time W is then given by
W= (1-me) (-wfle'(o)) + (1) ("W;'(O)) . ?

4. Several Servers in Unit 2

Here we allow the second unit to have ¢ exponential servers of service 3

rate u. The queueing system is now studied as a Markov process on the state

space E = {k > O}XEl, with infinitesimal generator

A

00 A

01

Ao A1 Ap

A<:-2,0 Ac-2,l Ac:.-2,2

An1,0 Be-1,1

The square blocks of dimension Km+l are given by,

O

ARG Y

e T T e LT




t
I

12
AOO =Q-2 , .
A01 = Alz =, = Ac-l,z = Ao = )\A ,
Aio-iuI, for 1<1<e-1,
i Aﬂ a Q-AA-1iuI , for 1 <{i{i<ec-l,
A1 s Q-AA-cul ,
Az = cpl ,

where the matrices Q and A are as given in Section 1.
Then, corresponding to Theorem 1, we have

Theorem 2. The queueing system is stable if and only if

11K5<cu.

The stationary probability vector x 1is partitioned as

(_x_o, Xis Xys eoes X5 X 0 .e+) , where each of the component vectors is of ]

dimension Kmtl. The vectors X for k> ¢, are given by ,

- k-c+1 1
a9) X =x_; R . .

i The matrix R is the unique solution in the set of nonnegative matrices

of spectral radius less than one, of the matrix—duadratic equation,

(20) cuRE+ R (Q-AA~cuI) + A& = 0 .

The last m rows of R are positive; all others are zero.

The vector (_x_o, iy oo ) 1s the left eigenvector, corresponding

Ze-1

to the eigenvalue zero, of the irreducible semi-gstable matrix

et




P

TR

e iy At

13

Agg  Ag1 0 .-
Ao A1 A e
Azo Azl e e
(21) T = A¢:-2,o Ac-2,1 Ac-2,2
Acc1,0  Ac-1,1™R4

and is normalized by

e+ l(I-R)-lg'l.

p. S
—_-

Proof. The statements about the steady-state vector x were proved in [9].

That the matrix R has the particular structure is clear from the discussion

in Section 1.

The matrix R 1is computed using the algorithmic procedure described in

Section 2, as are the steady~state vector and the other quantities of interest.

In the computation of the waiting time distribution of an arriving cus~
tomer, only the distribution Wz(') requires some discussion. 1Its Laplace-

Stieltjes transform W;(s) is given by

* . -1 c-1 (K) L [c }i-c+1 (K)
"z(') (lk-e-) [;EO X et ifc cuts 2] i :
Since gi‘) - _5:2_ Ré‘-c-i-l’ for 1 > c, we obtain
o) = (re)-L <t.®, () ¢ (sTscnl-cur.)~}
20 = @™ | Tz Vet a5 Ry (sTreul-euk) e

Upon inversion and simplification, one obtains
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e =1 - @)™ 2% arp R e [-uxrYle

for x>0.

We see that the distribution Wé(°) may again be computed by the solution

of a simple system of differential equations, similar to that obtained in

Section 3.

5. Overflows from a Multi-server Unit 1 to a Unit 2 with Several Servers

In this section, we consider the system with Unit 1 having r exponential
servers with parameter Mys and the second unit with ¢ exponential servers,
with parameter Moo A particular case of this model, in which both units
have single exponential servers with the same rate and in which the waiting
room in unit 2 1is also of finite capacity, has been studied in [2].

We describe the unit 1 of the present model by a Markov process om the

state space El = {0, 1, 2, ..., K}, with infinitesimal gemerator

-2 A
Hy -A-ul A
2u1 -A-Zul

The stationary probability vector 2z of Q3 is given by




- -«..«m—m»-ww-f-.‘f
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where

The queueing model now readily leads to a quasi-birth-and-death process

0

r-l n K
n! r!

n=0 (1

on the state space E = {i > 0} X E

where

and Al

15

n=xr

for 1<n<r-1,

for r<n<KkK,

-1
a)° _1_l
u1 rn-:_

1° with generator

Aea1,1 %o

'XAl,
l<igel,

for 12i<ec-l,

400 %01
A0 A1 %2
Ace2,0 82,1 4e-2,2
A0
Aoo = Q3 ~ A4
Agp = By ™ e = A2,27
AiO = iuzI N for
Ay = Q38 -1,
A, = cu I
Ay = Qu-Ab;-cu I ,

is the diagonal matrix of order

K+l , whose last diagonal element

Ay ey Soeesre e = PP e e e ST AP ———
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is one and all others are zero.

The following result is then immediate.

Theorem 3. Under the equilibrium condition

g <cuy,
the stationary probability vector x of Q4, in partitioned form, is given

by,

i-ctl
(22) X, =% _,R , for 1>c .

The matrix R is the unique solution in the set of non-negative matrices

of spectral radius less than one, of the equation

(23) c Uy RZ + R (Q3-cu21-AA1) + AAl =0,

The vector y = (x., s cees ), 1s obtained as the left eigenvector

p S
=e-1
corresponding to the eigenvalue zero of an irreducible, semi-stable matrix,
similar to the matrix of Equation (21). It is normalized by the condition
c=2

Only the last row of R differs from zero and is strictly positive.

The elements RO’ Rl’ cany R‘K in the last row of R are computed by

iteractive solution of the system of equations

cu, RK Ro - (H-cuz) RO + ¥y Rl -0,

cu, &K Rj + A Rj-l - (A+ju1+cu2) Rj + (J+1) ¥y Rj+1 =0,

for 1 <j<r-1,
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cH,y RKBj + A Rj-l - (A+ru1+cu2) Rj + Ty, Rj+1 =0,

for r <3 <k-1,

oa

cu,y R; + A RK-l - (1+ru1) RK +A=0,

The accuracy check

K A

LI R, = —
j=0 b Cu2 ?

should be satisfied.

6. Additional Variants

For each of the three preceding models, the Unit 2 may be assumed to

have its own Poisson arrival process of rate A The general results on the

1.
matrix-geometric form of the stationary probability vector x remain valid

for this case, but the major simplifications due to the particular structure ;

of R are lost for 1, > 0. The matrix R 1is then strictly positive. 1In
the computation of R, it is still worthwhile to write that matrix in partitioned
form, so that the highly sparse and regular structure of the coefficient

matrices may be exploited. How this may be done 1is obvious once the analogues

el

of the equations (9) are writtem down.

Y T R 1

'; : The overflow streams from the bounded M/PH/1 and M/M/r queues are parti-

‘ ; 4 cular cases of the versatile Markovian point process, introduced in [10]. By
implementing the general, but much more belabored algorithm in [12], it is
possible to study the case where Unit 2 has a single server with a general

service time distribution. If one allows the service time distribution in

o e e

that unit to be of phase type, the methods of the present paper may be im-

T

X ; plemented. The large matrices, which now arise, need to be handled with care

& i to avoid problems of storage and large computation time. A brief discussion

of this case may be found in Chapter 6 of [11].




7. Numerical Examples

In some of the small number of papers, which give numerical results for
overflow models, it has been noted that such results may be quite astonishing
and that naive approximations to the overflow stream may lead to gross errors
[3-5]. This observation may be made generally for queunes in which arrival
and service rates are subject to (random) fluctuations [8, 11]. The under-
l¥ing cause for the highly overdispersed queue length and waiting time dis-
tributions for such models lies in the large variations, which typically occur
in the interarrival times to Unit 2. In order to illustrate this adequately,
it is necessary to consider several related numerical examples.

We consider the system consisting of an M/PH/1 queue of finite capacity
K = 4, with overflow to a single exponential server. The service time dis-
38 1

) Ez (8,x) + 39 El(o.l,x). Its mean

is 0.5. 1Its particular form was chosen to reflect a case in which occasionally

tribution in Unit 1 was chosen to be

long service times occur. The arrival rate A to the system is 20, so that
Unit 1 is saturated 902 of the time.

The service rate u in Unit 2 was chosen so as to obtain three different
cases, respectively with p = 0.92, 0.94 and 0.96. Before giving the numerical
results, that are obtained, we briefly consider an appealing, but naive
"approximation". It may be argued that the overflow stream from Unit 1 could be
"approximated" by a Poisson process of rate 0.9A. This would lead, by

elementary formulas for the M/M/l1 queue, the following values for the mean and

the standard deviation of the queue length in Unit 2.

2 mean st. dev.

11.50 11.99
15.67 16.16
24,00 - 24.49
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The correct computed values are however much larger.

-3 mean st. dev.
0.92 18.99 23.39
0.94 27.64 33.44
0.96 45.24 53.33

The reasons why the naive approximation fares so poorly are similar to those
discussed in [8]. During periods of overflow, the second unit behaves like
a mildly unstable M/M/1 queue, which may recover from its build-up during
the periods when Unit 1 is not filled to capacity. During the rare long
service times in Unit 1, the latter will almost certainly become saturated
and remain so for a fairly long time. The build-ups in the second unit will
then be substantial and cause large queue lengths for a long time thereafter.

The numerical results for Unit 2 are not significantly affected by a
moderate increase in the capacity of Unit 1. A change of e.g. K= 4, to
K= 8, resulted in only a minute change in the computed characteristics of
Unit 2. The additional four waiting spaces are occupied most of the time
and do not appreciably affect the rate of overflow.

As is to be expected, the queue in Unit 2 1is much smoother when the
service times in Unit 1 exhibit less random variation. This is seen by
replacing the earlier service time distribution, e.g. by E3(3,x).

A varilety of other aspects of overflow in queues may easily be numeri-
cally investigated by implementing the algorithm proposed in this paper. The
numerical results are often astonishing at first, but are seen - after some
reflection - to correspond to intuitive qualitative behavior of the queue.
They suggest that great care is needed in the interpretation of aumerical

results for networks with capacity constraints.
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